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Abstract—A method is presented, namely the improved quasi-steady approach, which takes into
approximate account both the effect of thermal history and of thermal energy storage capacity of a flowing
fluid in transient, conjugated, forced convection problems and thus dispenses with two of the assumptions
ordinarily implicit in the usual, simple quasi-steady approach to such problems. The development of the
improved approach is suggested by a transformation of variable which leads to an exact solution for slug
flows which is then generalized and asserted to be approximately valid for non-slug flows.

Two analytical solutions using the proposed approach are presented and compared to finite difference

solutions which were generated as benchmarks for the comparison. Additional comparisons are made to the
usual, standard quasi-steady results.
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NOMENCLATURE

=pc,R/p,c,,.b, ratio of thermal storage
capacity of the fluid to that of the solid;
Airy function defined as shown in equa-
tion (33);

defined by equation (41);

thickness of duct wall;
=puCpbRO/K;

defined by equation (42)

9 é 2/3
constant, = =(0.538)I"( - g ;
2 3/\3

constant, =0.538T @) ;

specific heat of fluid and duct wall
respectively;

defined by equations (20) and (19),
respectively;

thermal conductivity of the fluid;
modified Bessel function of the second
kind;

integer ;

local surface heat flux;

=—q,Ryx'?/3 (0.538) I (2/3)kAT, non-
dimensional local surface heat flux with
AT = 0, for a step change of inlet
temperature and AT =AT, for a sinu-
soidal inlet temperature;

half thickness of duct;

Laplace transform parameter ;

time;
local and initial  temperatures,
respectively;

local, mass average, and maximum
velocity in duct, respectively;
space coordinates along duct and normal
to wall, respectively;
defined by equation (16).

Greek symbols

w

>
bo»

= k/pc, thermal diffusivity of fluid;
Gamma function;

time increment;

amplitude of sinusoidal inlet temperature
variation ;

space increments along duct and per-
pendicular to wall, respectively;

=T — T, temperature excess over initial
temperature ;

refers to a constant wall temperature
excess;

mass density of fluid and of wall,
respectively;

defined by equation (13);

= ax/R*u, non-dimensional distance
along duct;

defined by equation (3);

angular frequency;

= 0.538(3)' *T(2/3)k/p,c,.bR.

Subscripts and superscripts

local bulk mean temperature of fluid;
refers to inlet conditions;

indices locating position of node in x and
, respectively;

index specifying time;

standard quasi-steady approach ;

refers to conditions in the solid duct wall
material.

INTRODUCTION

A KNOWLEDGE of the time varying surface temperature
and heat flux for a solid, over which or through which a
fluid flows, is important during the starting up and
shutting down phases, or when a change in operating
level occurs between different steady-state levels. In
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addition, this knowledge is also needed for devices
which may never attain steady-state operation because
it is in their nature to operate periodically in time.
Examples of physical equipment which experience
these types of unsteady operating conditions include
regenerative and recuperative heat exchangers, the
blades and vanes of gas turbine power plants, and
nuclear reactor fuel rods.

In the most realistic analyses of solid surfaces
interacting by convection with a fluid during a tran-
sient, cognizance is given to the fact that the conditions
at the solid—fluid interface are not known a priori, but
rather what is known as a function of time is a
boundary condition at some other surface of the solid,
or generation within the solid, or perhaps an inlet fluid
temperature. Problems of this type in which the
temperature field in the moving fluid and the tempera-
ture field in the bounding solid must be found
simultaneously, because of the mutual coupling of the
fields, are referred to as conjugate problems. Generally
speaking, the complexity of a transient conjugated
problem is such that often an approximate solution
using the standard, simple quasi-steady approach is
decided upon. Basically, this quasi-steady approach
utilizes a steady-state surface coefficient of heat trans-
fer which is a constant in both space and time or which
exhibits the functional dependency on space coor-
dinates which is valid for an isothermal surface. Thus,
the standard quasi-steady approach does not account
for the thermal history effect, that is, the surface
temperature’s dependence upon position, or for the
effect of thermal energy storage capacity of the flowing
fluid. Representative of this type of approach to a
transient conjugated problem is the analytical portion
of the work in [1] by Adams and Gebhart.

Because of the relative analytical simplicity it
affords, the slug flow idealization has been employed in
the solution to a number of transient conjugate
problems. In [2], Siegel and Perlmutter consider
laminar slug flow in a channel with arbitrarily specified
surface heat flux. Exact solutions are found and these
are used by [3] in an energy balance on the wall to
yield an exact solution to a slug flow conjugate
problem where the transient is caused by various types
of generation inside the wall material. Namatame [4]
presents a modified quasi-steady solution for a slug
flow transient conjugated problem in which the ther-
mal history effect is taken into account. Sucec, as part
of [ 5], uses a surface heat flux expression for arbitrary
surface temperature in a modified quasi-steady so-
lution of a slug flow conjugated problem in which the
fluid inlet temperature varies with time.

Soliman and Johnson [6, 7], find approximate
solutions for the case of turbulent flow over a plate
with thermal capacity when the plate generation is a
step function or an exponential in time. First they find
a solution for the instantaneous surface coefficient of
heat transfer for the zero capacity plate when the
convective terms in the thermal energy equations are
neglected. Then the assumption is made that this time
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varying surface coefficient also applies to the finite
capacity plate for t < x/u, and that the steady-state
surface coefficient is the proper one for ¢ > x/u,, With
this, the energy balance on the plate is solved for the
time varying average surface temperature. Compar-
isons with experimental data indicated much better
agreement than yielded by the standard, simple quasi-
steady results. In an approach bearing some similarity
to the work of [6] and [ 7], Kawamura [8, 9], employs
an approximate expression for the eddy diffusivity of
heat which allows an analytical solution of the trans-
ient thermal energy equation with convective terms
absent when the fluid interacts with a wall, of non-zero
thermal capacity, which undergoes a step change in
generation. The time varying surface coefficient of heat
transfer thus found is then used in the thermal energy
equation with the convective term present, until the
surface coefficient drops to the steady state value after
which the steady-state surface coefficient of heat
transfer is used. Both these approaches, [6-9], repre-
sent attempts to take into account the thermal ca-
pacity of the fluid, something the standard quasi-
steady approach does not do.

Both Dorfman [ 10], and Karvinen [ 11, 12], describe
a modified quasi-steady approach, for flow over a flat
plate, in which thermal history is taken into approxi-
mate account by use of surface heat flux expressions
that are valid for steady-state conditions when the
surface temperature distribution is an arbitrary func-
tion of the space coordinate. Energy balances on the
wall which incorporate these surface heat flux ex-
pressions can then be solved for the unknown wall
temperature distribution.

The present work concerns itself with the develop-
ment and application of an improved quasi-steady
approach for transient conjugated forced convection
problems which takes into approximate account both
thermal history and the thermal capacity of the flowing
fluid. This improved quasi-steady method has its
origins in the slug flow problem and is, in fact, an exact
solution to the slug flow problem which, after exten-
sion and generalization, yields approximate ex-
pressions for the surface heat flux in non-slug flows
which acc: unt for thermal history and fluid thermal
capacity. The method is applied to two problems of
flow in a parallel plate duct in which the finite thermal
capacity walls and fluid are both at a constant
temperature initially when a transient is initiated by
either a step change in fluid inlet temperature with
time, or a sinusoidal variation in time. For a linear
velocity profile, exact solutions are found for the
improved quasi-steady approach by application of
Laplace transformations. Presented, for these two
different inlet temperature variations, are the response
functions for the wall temperature, wall heat flux and
local bulk mean temperature of the fluid flowing in the
duct. In order to test the validity of the improved
quasi-steady approach, finite difference solutions were
generated to serve as baseline solutions or bench-
marks. The comparison of the finite difference results
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with those of the improved quasi-steady analysis also
serves to delineate the domain of applicability, with
acceptable accuracy, of the improved quasi-steady
approach. Finally, also for comparison purposes, some
results for the standard quasi-steady method are
presented.

ANALYSIS
Development of the improved quasi-steady approach

Since, as mentioned earlier, the method proposed
herein evolved from a solution to a slug flow problem,
we begin by considering a fairly general slug flow
problem, namely the steady, laminar, slug flow of a
fluid in a parallel plate duct of height 2R with the fluid
initially at a constant temperature when suddenly the
temperature of the duct walls becomes an arbitrary
function of position and time and the fluid inlet
temperature begins varying arbitrarily with time. The
problem, at this point, is to develop an expression for
the local, instantaneous, surface heat flux. The mathe-
matical description of the slug flow problem becomes
as follows:

a6 o0 a0
o e = A, {1
ot ox ay

t=0,x>0,0<y<R 0=0

x=0,t>0,0<y<R O=0,),

%

;—Q:O (2)
cy

andat y =0 0=10,x,1).

t>0, x>0 y=R

One improvement to the standard, simple quasi-
steady approach would be to solve the above set of
equations with 06/0t set equal to zero, yet retaining
6.(x.t} at y = 0. The resultant expression for the
surface heat flux now takes into account thermal
history and is given by Sucec [5] for flow over a flat
plate. In effect, this is also what Karvinen [11], and
Dorfman [10] do for the case of non-slug flow over a
plate. However, in an effort to retain the dependence of
flux on the fluid’s thermal capacity, it was decided to
use the following transformation due to Schumann

f131:

T =1t~ X/u,,

(3
Using this in a formal change of variables and
leaving open the question of satisfaction of the initial
condition on time, equations (1) and (2) become, with
8 =0(x, y, 1),
a0 %0

Uy o =2 O s
™ ox ay?’

x=0, 0<y<R 0=0,1)

4

all ©

5

o0
x>0; y=R, — =0andat
ay

y=0, 0=0_,( 1+ x/u,)
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The Laplace transformation with respect to x is
employed to solve equations {4) and (5) which map
into (6) and (7) with § defined as follows.

0= L 0(x,y,1)= J fe~s* dx,

x—s 0

Y

su u

Y _SUmpg_ _Um

4o a L(t), (6)
y=R g-g =0, andaty=0, =071 (O

Upon solution of (6) subject to the conditions (7), one
arrives at,

f= [Qﬁ(jl —0,(s, T)] [tanh (R \/ @)
s «
x sinh O/ﬂﬁ) — cosh (y\/@ﬂ + Q—”-(Q. 8)
o a s

The transformed surface heat flux g,, can be found
from (8) as

U5 -
) __,k(f’g » a_mtanh(R\/?)
b= dy)Fo TNV s
X [sgw(s,t) - 99(1)]. 9]

The inverse Laplace transform of the first factor in (9)
is given in [14] and when this is used in the con-
volution integral with the inverse of the factor in
brackets, the following results:

L3 (TR )

K [x,%
u,R?
a8, ¢
xg(é,t%—;’;)dé. (10)

Now since 0,,(x, t) one notes from (10) that ¢ + &/u,,, by
its placement in the argument of 86, /0¢, is acting like a
dummy variable for time z. Since physically, we are
considering only time t > 0, it follows that:

r+£20,
u

or that, using (3} in (11)

(1)

EZx —u,t

(12)

Since &, a dummy variable for x, must lie between O and
x, it follows that equation (12) gives rise to two
different time domains. If ¢t > x/u, then (12) is
automatically satisfied for all ¢ between 0 and x,
whereas if t < x/u,, then £ must begin at x — u,t to
ensure that it will always be positive.

Thus for ¢ < x/u,, the lower limit of the integral in
equation (10) must be x — u,,t. It is convenient to use
the following change in variable in equation (10), when
t < x/u,, tocause g, to be viewed as a function of tand
t:
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o=t-—x/u,+ ¢, (13)

With this, the solution for the surface heat flux in the
original slug flow problem, equations (1) and (2),
becomes as follows where the integrals are to be
intrepeted as Stieltjes integrals:

x

Z (_1)ne—[R2nz/1ll—n)]

k[ .=
qw(Tﬁ t) = E J‘() ot — G')
R?
0\
x —=(t1,0)do, for t < x/u,, (14)
do

(—1y e—[Rzu,,,nZ/z(x~§)]

0 na(x — §)
u,R?

a6,

o0&

The two different time domains that appear in
equations (14) and (15) are the same ones as deduced
for slug flows by Siegel and Perlmutter [2] on the basis
of a Lagrangian viewpoint and physical reasoning.
Depending upon whether t<x/u, or t>x/u, one is
dealing with fluid downstream or upstream, respec-
tively, of the front of fluid that wasat x = Oatt = 0.

The condition at ¢t = 0 in equation (2), which was
not satisfied explicitly by the solution to (4) and (5), is
satisfied implicitly by equation (14) because of the
arguments which led to (14). This can be established
rigorously by using the following transformation:

(16)

X

(&,1)d¢, for t > x/fu,. (15)

Z =X — Uyl

Viewing 8 = 08(Z, y, t), equations (1) and (2) transform
to the following:
a0 0%0 (17)
o,
ot oy*
t=0; 0<y<R; 6=0;

all Z a6 (18)
y=R o 0 and at

y=0, 0=04Z1)

t>0;

If one solves equation (17) subject to conditions (18)
which include the initial condition at ¢t = 0, one is led
quite directly to equation (14). Equations (14)and (15)
are the surface heat flux manifestations of the complete
exact solution and these two equations can now be
used directly in an energy balance on a wall which
bounds the fluid. The energy balance equation, when
solved, gives the exact solution for the unknown wall
temperature in a transient conjugated slug flow duct
problem.

Extension to non-slug flows

Now the most difficult transient conjugated prob-
lems, which are also the ones of most interest from the
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practical viewpoint, are the ones involving a non-slug
velocity profile and for fully developed, hydrodynami-
cally, duct flow this means that u = u(y). In order to
extend and generalize equations (14) and (15) to non-
slug flows, equation (10) is examined. Consider steady-
state conditions and an isothermal wall. Integrating
equation (10) under these conditions where the in-
tegration must be done in the Stieltjes sense one arrives
at,

q.(x)=G{x)0,,, (steady and isothermal conditions),
(19)

where G(x) is the kernel of equation (10). Thus, the
kernels of equations (14) and (15), G [u,(t — ¢)] and
G (x — &), have their form dictated by the solution for
the steady-state flux on an isothermal surface, equa-
tion (19).

Next, it is asserted that equations (14) and (15) will
hold approximately in non-slug flows if the kernels in
the integrands come from the appropriate non-slug
flow solution. Thus, if a solution or an experimental
correlation is available, as many already are in Kays
textbook [15], for the surface heat flux in steady, non-
slug flow over an isothermal surface in the form

qw(x) = G(X)OWO’

then equations (14) and (15) are written as follows:

q,(t, 1) = J
(4]

* 00
qu(x, 1) = J. Glx — &) —F

0 &

(20)

00
Glu,(t — 0)] (ﬁiaw (1,0)do,

for t < x/u,, (21)

(&, 1)d¢,

for t > x/u,. (22)

Equations (21) and (22) constitute the surface heat flux
expressions to be used in the improved quasi-steady
approach being advanced here. These expressions take
into approximate account both thermal history and
finite thermal capacity of the fluid and reduce to the
exact expressions for slug flow when the G function is
replaced by the G, for slug flow fromequation (19). The
generalized expressions (21) and (22) form a structure
that unifies and displays the complementary aspects of
previous work on modified quasi-steady approaches
since the researchers in [6] and [8] focused on the
effect of fluid thermal energy capacity, while those of
[4], [5], [10), and [11] concentrated on the effect of
thermal history alone.

The approximate nature of the equations (21) and
(22) for non-slug flows is partially rooted in the fact
that there are not only two time domains, as in slug
flows, but one would probably define three time
domains. The first time domain ¢ < X/u,,, is very
similar to that in a slug flow since it consists of fluid
that was already in the channel when the transient was
initiated, that is, fluid which satisfies the initial con-
dition. At some time greater than x/u,,,,, essentially all
of the fluid that satisfied the initial condition has
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already been transported past the x of interest and
hence one is considering fluid that satisfies the inlet
boundary condition and the state is reasonably similar
to that of the second time domain ¢ > x/u,, of a slug
flow. However, in the non-slug flow with u = u(y)
there is a third or intermediate time domain in which
the slower moving fluid near the wall, which satisfies
the initial condition, is communicating by thermal
conduction with the faster moving fluid above it at the
same x, fluid that satisfies the inlet boundary con-
dition. The duration of this intermediate time regime
compared with the length of the first and second time
domains will have an effect on the accuracy of the
improved quasi-steady method in non-slug flow prob-
lems. One can obtain some qualitative information
about this complication by looking at the thermal
energy equation, for a fully developed non-slug ve-
locity profile, using as independent variables x, y, and
7, which has the form

u(y)|co a0 %0
[1—“}E+u(y)&-a. (23)

Uy dy?
The improved quasi-steady analysis assumes that the
first term on the left side of equation (23) is essentially
zero. Obviously, in the case of slug flow where u(y) =
u,, this is rigorously true. Even in a non-slug flow case
this may be essentially true if 30/0z, or [1 — u( y)/u,,},
or their product, is small. The factor [1 —u(y)/u,,] will
be small for relatively ‘square’ non-slug velocity pro-
files and is seen to take on its largest values near the
wall which, of course, is the region where it takes
longest to sweep away the fluid which satisfies the
initial condition. Some evidence for the adequacy of a
two time domain approach when the non-slug velocity
profile is ‘square’ enough is implicit in [6], where an
external turbulent fiow was considered, and also in
[16] where laminar flow inside ducts is considered.
Thus, it was decided to use as the approximate signal
time, or lag time, which separates the two time
domainsin the improved quasi-steady model, the same
quantity that is appropriate for a slug flow, namely
X/U,,

Application of the improved quasi-steady model

To test the validity of, and learn more about, the
proposed approximate model, it was applied to two
problems. Considered was steady, laminar, constant
property, fully developed hydrodynamically, flow in a
parallel plate duct of height 2R with walls, of thickness
b, which are perfectly insulated on their outside
surfaces when both the walls and the fluid are orig-
inally at a constant temperature. In the first case
considered, a transient was initiated in the flowing
fluid and the walls by a step change in the fluid inlet
temperature while in the second case the unsteadiness
is caused by a fluid inlet temperature that varies
sinusoidally with time for all ¢ > 0. The problem is to
predict the surface temperature and heat flux as well as
the bulk mean temperature of the fluid as functions of x
and t.
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An energy balance is made on a control volume of
the duct wall b by dx, assuming that the wall tempera-
ture can be lumped in the y direction, that axial
conduction in the wall is negligibly small, and that the
thermal properties of the wall are constant, and yields
the following.

a0, 9w

— = 24
Ct o puCb (24)

The improved quasi-steady expressions for the surface
heat flux, g,, are given by equations (21) and (22)
where the function G(x) must now be chosen. At this
point, for a combination of reasons, a linear in y
velocity profile was chosen. Firstly, it provides analyti-
cal convenience in allowing an exact solution with the
G (x)function given implicitly in the results of Lighthill
[17]. (The correct, but more complicated, G(x) for the
actual quadratic velocity profile is available in [15]).
Secondly, the linear velocity profile is thought to
provide the most severe test of the improved quasi-
steady procedure since it is farther away from the slug
profile than is the more ‘square’ actual quadratic
velocity profile in the duct and one of the primary
reasons for these solutionsis to test the accuracy of the
model. Also, as is well known, the linear velocity
profile is an adequate representation of the actual
velocity profile in a thin thermal boundary layer. Thus,
with the use of the wall shear stress and mass average
velocity u,, appropriate to the actual quadratic, fully
developed laminar duct flow, the linear velocity profile
becomes
w(y)=3u, 2. (25)
’ R
Lighthill’s result for the steady state fluxin[17] is an
exact solution for a linear velocity profile and is
applicable here, certainly in the thermal entrance
region. Hence, in terms of the non-dimensional dis-
tance y = ax/u,R? we have that,

1
5 (26)
Z1,3

G(y) = 0.538(3)" 3

x|

With 0, = T,, — T,and therefore 8, =0att = 0,itis
seen by inserting equation (21) into (24) that the
solution in the first time domain, t < x/u,, is 0 = 0.
Insertion of (26) into (22) and this result used in (24)
gives the equation to be solved for the surface tempera-
ture distribution in the second time domain as, after
noting that 06,/0t = 76/,

30, 0538(3)3% [* 1
t pwcpwbR 0 (X - 6)1/3

20
x Spl6]dE=0 for c20. @27)

Solution for step change in inlet temperature

The solution to equation (27) for §,, must satisfy the
following two side conditions,
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=0, x>0, 8,=0,

and y=0, 1>0, 0,=0, (28)

Taking the Laplace transform of equation (27) with
respect to y yields,

¢o

=0, —8,)=0, (29)

d

t=0, 0,=0. (30)

Solution of (29) subject to (30) yields the transformed
function as

g, + 1
e e L (31)
6, s s

The procedure for finding the inverse transform of (31)
is given in Appendix A and yields the following.

0,.(x 1) - 1 *
0 6m>? )y

€

3/2

N

One check that can be made on the operations that
led to (32) consists of seeing if (32) does yield 8,, = O at
1 = 0. Setting t = 01in (32) leads to an infinite integral
available in analytical form in Luke [ 18] and its value
causes the initial condition to be satisfied. However,
for values of 7 other than zero, it was found that
equation (32) was more easily worked with when it was
recast in a form in which the Airy function, Ai(z)
appeared. From [19], one has that

1z 2.,
Ai(Z)=;\/SK1/3<323/2>.

Using this yields the following solution for the wall
temperature distribution by the improved quasi-
steady approach.

x w(u — ¢07)2K1/3< >d“ (32)

(33)

0
~ =0 for t < x/u,
6,
0 x 2
00 2 Jporsagr (30"
x Ai(z)dz, for t20. (34)

Now the non-dimensional surface heat flux can be
found from (24) after changing the variable to T and

rearranging to give
por
G0™

2.1 = J z |:z
$ot/3p)'"
for 120,

x Ai(z)dz, (35)

with @, being zero for ¢t < x/u,,

In order to arrive at the bulk mean temperature
excess 6 of the fluid, one makes an energy balance on a
control volume dx long by R high which gives
00g

00
G = pu,,,c,,R—B + pc, c, R—2.

ox ot (36)
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Changing the variables to y and 7 in (36) and then
solving for 0, yields

08(X7 )___ R
. 1+Wj q.(8,7)dp.

(37)

If one obtains g, from (35) and inserts it into (37), the
result contains an inner integral whose lower limit
depends upon the integration variable of the outer
integral. However, if one then integrates by parts three
times the resulting equation contains only integrals of
the same general form as already present in (34) and
gives 0 as follows:

0 ™oL
B0 T) =1 = cp?? J Ai(z)
8, Bor/3p)
2
x4z 4 321’—3 — 2 ¢°’3 dz, for 120,
(3" (30!

(38)
and

0, =0 for t < x/u,,

Sinusoidal inlet temperature variation

Considered next is a problem similar to the one in
the previous section except that now the transient is
initiated by a fluid temperature that varies sinusoidally
at the inlet. In this case there is never a steady-state
since, after the transient portion of the unsteadiness
decays, one is left with the ultimate periodic unsteady-
state.

Once again the fluid and the duct walls are at
constant initial temperature excess 0; = 0 when the
inlet fluid temperature excess, at t = 0, begins varying
with time as 6, = AT, sin wt.

Application of the improved quasi-steady approach
to this problem leads to equation (27) which, after
application of the Laplace transform, gives the tem-
perature excess in the transformed plane as

g, sin wt cos wt
AT, §173 (Szfrs 4 f’;) §273 (?232;3 + L“_)
o w $o
e“i’o«"l t
+—— . (39)
23 (@52,3 n ﬁ’_)
w do

To effect the inversion back to the physical plane the
same overall procedure was used as given earlier for
VO (2/3)3%3¢

equation (31). Thus, one gets:
&\
27'[(b* 1/ 3)2 - 3 b*xlg‘J

*.,1,3
X f z Ai(z) cos <b X Z)dz}
0 Co

. 3320 (1) (4/3)3 3¢,
x sin w1 — ,
2nmb*yt3

L(b* 3, wr)

AT,




Improved quasi-steady approach

o 2 -3 A
-3 W . z Ai(z)
. (b*x‘/32> ]
X sin dz |coswt
. ©o

3cq
+ b*XI,G
x
CowT Co
x ﬁ ey {Z b*y B% 173 b*XU3
pryti3
X sin X z— Lot
c b7
x z Ai(z)dz, for 120, and
0,/AT, =0 for t < x/u,, (40)

The first two terms of (40) represent the eventual
periodic unsteady response while the last term is the
transient portion of the response. After defining A4 (y)
and B(x), equations (40), (24), and (37), with AT,
replacing 8,, give the flux and bulk mean temperature
as follows:

A(x) = coefficient of sin wt

in equation (40), (41)
B(x) = coefficient of cos wr
in equation (40), (42)
b*y'*Bx) b*y' A0

Q. (b*¢' 3, wt) = sin wt +

3¢, 3co

x

Co
X COS T + 17*_1/3 ,
X cowt/h*y'i?

b* 1/3
x{—l+cos[ 4 <z—
Co

x z Ai(z)dz, for 120, and
0.=0 for < x/u,,,, 43)
04(b*x' 3, wt) — sin wt 6c0
AT, = Az(z)
%173 *.,1/3
« sin b*y' 3z dz — \/(3)1“(2/3)b X
Co 2nc3'?

6¢ 3 x bh* 1/3
xcoswr+b*—2{in(z)[l —cos< io Z

33/21"(1)r(4/3)b*2x2’3} .
- 1n wt

232/3

)Je

4rc

ﬂ 2/3
b* cowt/h*pd

x {— 1 +cos[ cﬁo (z—b?;i;)]}

x z Ai(z)dzdB, for t20, and

0,=0 for t <x/u,

CoT
b*XI/S
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Standard quasi-steady approach

For comparison purposes, the same problems will
also be solved by the commonly employed standard
quasi-steady model which normally uses the heat
transfer coefficient for steady state flow over an
isothermal surface. This is given by equation (26) for
the cases considered here. Using this in (24) gives the
wall temperature and flux as fallows for step and
sinusoidal inlet temperature variations, respectively :

% =1 — e~ 1.0651{{¢o7/(3y)' °]+0.72851 ay® } (45)
1.0651 0
) E——— | 1 = e, 46
Q11 =" [ > } (46)
O = {sin (wt + wx/u,) + 1.2888 b*y! 3
AT, "
X [—cos (ot + wx/u,) +
e—0.7759{(wt/b*x' )+ [(wx/u,yb*y' T}
, 47
1 + 1.6609 b*2y2/3 ]} “7
Q. = 045756 b*y' > cos (w1 + wx/u,)
+ 1.2888 b*y' sin (wt + w x/u,,)
e—.047759{lmr/b‘1"’)+ [(eox/u, b*x' 3T} 48
[+ 16609 b*2,73 ' “

Finite difference equations

To ascertain the accuracy and the limitations of the
improved quasi-steady approach, it was decided to
compare it to the true solution of the problem as
represented by a finite difference solution to the
governing partial differential equations (23) and (24)
with the velocity profile given by (25). Energy balances
on nodal volumes, equivalent to use of the standard
central difference approximation for the conduction
term and an ‘upwind’ scheme for the convective term,
gave the implicit finite difference algorithms below:

forj=1: (AR + 1) %11 — ARQNS! = ¢F,
2<j<N—1: —AF¢¥!, + Q2AF + Ac + )¢k t!
~ AFQL = 6+ Akl
j=N:=2AF¢*L, +(2AF+Ac+1) bt
= ¢iy + Acdl] s
At At a
Ac=qux—, AF—-ozA 3 AR=EAFAy.

By use of the usual Taylor series expansions, it was
verified that the finite difference equations (49) are
compatible with the governing partial differential
equations with truncation error = O(Ax) + O(Ay) +
O(Ar).

A stability analysis demonstrated the unconditional
stability of the equations (49). While solving (49), the
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finite increments, Ax, Ay, and At, were reduced to the
point where the solution became independent of
increment size.

The structure of the equation (23) dictates a march-
ing type of solution, in both x and ¢, for the equations
{49). To begin the solution one startsat: = 1 Arand at
x = | Ax with the initial condition {t = 0)and the inlet
boundary condition supplying the information needed
to cause (49) to be a set of N simultaneous algebraic
equations which are then solved for the nodal tempera-
tures at x = 1 Ax and t = 1 Ar. With these one can
proceed to X = 2Ax and solve the simultaneous
equations again, still at 1 = 1 At, This is continued
until the x of interest is reached. The entire process is
repeated at t = 2 At, etc., until the time of interest or
the steady-state, if there is one, is reached.

RESULTS AND DISCUSSION

The improved quasi-steady approach response func-
tions for the step change in inlet temperature, (34),
(35)and (38), and for the sinusoidal inlet fluid tempera-
ture variation, (40), (43) and (44), contain various
integrals of the Airy function which were computed
numerically with the Airy function values taken from
[19]. With this, the values of the response functions of
the improved quasi-steady model for the step change
in inlet temperature were evaluated and are given as
the solid curves in Figs. 1-4. Examination of (34) and
(35) indicates dependence of the wall temperature
excess ratio and the non-dimensional surface fluxona
single variable, ¢,1/(37)' *, which combines the yand 1
dependence. To test the accuracy of the method, the
finite difference solution to the same problem was run.
The finite difference equations and solutions exhibit a
dependence of the wall temperature and flux on
$o7/(3%)" 3 and a separate dependence on yandona =
pcR/p c, b which is the ratio of the thermal capacity
of the fluid to that of the wall, both on a per unit length
in x basis. So, finite difference solutions were carried
out for arange of values of a. Figure 1 shows the results
for a = 0.1 with the various symbols representing the
correct solution, the finite difference solution, at
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various values of y chosen for convenience of the finite
difference solution. As is evident from the figure, the
improved quasi-steady result exhibits excellent agree-
ment with the finite difference result for a = 0.1 over
the range of y which more than spans the thermal
entrance region. Also presented in the same figure, as
dashed lines, are the predicted responses using the
standard quasi-steady approach, equations (45) and
(46). As can be seen from these equations, there is a
separate dependence upon the group ay?*. However,
fora = 0.1, the curves for the smallest and largest value
of y used are nearly coincident so that only the one for
the lowest value of y was plotted and this curve is very
close to the curve for y = Owhen a = 0.1. Examination
of Fig. 1 indicates that the standard quasi-steady
approach does not do too well, even at this relatively
low value of g, in predicting the correct responses given
by the finite difference solution.

Now, at a = 0.1 the thermal capacity of the wall
material is dominant and that of the fluid is much less
important. However, as a increases, the fluid’s thermal
capacity becomes a more and more significant factor
controlling the response functions and since the im-
proved quasi-steady approach takes finite fluid ther-
mal capacity into approximate account for non-slug
flows, one expects increasing deviation beiween the
proposed method and the finite difference results for
the larger values of a. This can be seen by reference to
Fig. 2, a = 0.5, and Fig. 3 for which ¢ = 1.0.1In Fig. 2,
the agreement between the proposed method (solid
lines) and the finite difference result, while not as
satisfying as that of Fig. 1, is still considered quite
good. Showing up in this figure is the rise, in the finite
difference predictions, of the heat flux from zero at
values of ¢,7/(3y)'* near zero. The actual heat flux,
especially at the larger values of y, is lower and the wall
temperature at the highest y is larger than those
calculated by the improved quasi-steady approach at
small values of ¢,t/(3x)!/%. This is caused by the fact
that, with the actual linear velocity profile, the wall is
preheated by fluid layers moving faster than u,, since
these layers arrive at any x before fluid moving at u,,

a=0.10

Finite Difference X §
Results E
L 0.002539375
o] 0.010375
+ 0.0415 b
& 0.083
@ 0. 166 b

improved Quosi - Steady _
Standard Quaosi - Steady — — —

Fic. 1. Wall temperature and heat flux responses for a step change in inlet temperature.
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173
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F1G. 2. Wall temperature and heat flux responses for a step change in inlet temperature.

and communicate thermally with the wall by y con-
duction. This raises the wall temperature slightly, in
advance of t = x/u,, for the largest values of x, which, it
is felt, is at least part of the reason for the lower actual
flux. Essentially, this is part of the intermediate time
domain, referred to earlier, in which fluid that satisfies
the initial condition is communicating with fluid that
satisfies the inlet condition. In Fig. 3, for whicha = 1.0,
the trends, first seen in Fig. 2, are even more apparent.
The agreement displayed between the improved quasi-
steady predictions and those of the finite difference
method is considered satisfactory. Tentatively, it is
suggested thata = 1.0 be considered as the upper limit
of the improved quasi-steady approach in terms of
acceptable engineering accuracy. Additional evidence
for this domain of validity conclusion is available from
finite difference results at a = 0.75, 1.5, and 4.5, not
presented herein.

Also shown in Fig. 3 via dashed lines, for the two
extreme values of y, are the standard, simple, quasi-
steady solutions, (45) and (46). The overall agreement
between these solutions and the finite difference results
is not very good especially at the higher value of . In

Fig. 1, the error in the standard quasi-steady solution
was due almost exclusively to thermal history effects,
since the group containing ay*'* in equations (45) and
(46) is virtually zero, while the additional shift upward
of the dashed curve for y = 0.166 in Fig. 3 is due to the
larger values of ay*/® which represents an incorrect
dependence upon finite fluid thermal capacity.
Figure 4 compares the bulk mean temperature
predictions of the present method, equation (38), for
the step change in inlet temperature, to those of the
finite difference method. The agreement is very good
except at low values of ¢,t/(3y)!/® for the higher ¥
where the finite difference results are higher for 0,
because of the lower surface flux as explained earlier.
On the basis of the first four figures, it is seen that the
improved quasi-steady approach, which attempts to
take into account both thermal history and fluid
thermal capacity effects, predicts the finite difference
results reasonably well and does significantly better
than the standard quasi-steady approach. Yet the
improved quasi-steady approach, though more
difficult to apply than is the standard quasi-steady
solution, is a considerably easier approach than is the

1.0
0.40 + 0.8
O

3030 [ ¥°0.64
o . i\
T, Lk

0.20 + 0.4f
L 7
o1o}F o.2f,

o+ (o]

Finite Difference

Results
® 0.00259375 1
[} 0.010375
+ 0.0415
. 0.083 4
© 0.166

Improved Quasi - Steady ==
Standard Quasi - Steady - - --- -

X EVOR -
15 20 25 30 35 40
¢0 r/(3y) 173

FiG. 3. Wall temperature and heat flux responses for a step change in inlet temperature.
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a=0.10

JAMES SuCEC

severe test for the improved quasi-steady approach.
Looking at Fig. 5, one sees that the improved quasi-
steady results for the surface temperature and heat flux
are in very good agreement with the finite difference
results in both the transient start-up and the ultimate
periodic state for the parameter values that were
selected. The standard quasi-steady approach, how-
ever, differs significantly from the finite difference
result. Since the periodic state has been reached within
the first cycle, all cycles beyond the second are the same
as the second. Figure 6 displays the results for the bulk
mean temperature in the eventual periodic unsteady

0.8 Finite Difference Resuits
state.
o7f @ 0.010375
+ 0.0415
o6t ° 0.166
o5 lmprove? Quusi—lsteady CONCLUDING REMARKS
1.0 /3 An improved quasi-steady approach, which takes
¢o r/(3x) into approximate account both thermal history and

FiG. 4. Fluid bulk mean temperature response for a step
change in inlet temperature.

finite difference solution to the problem. Once the
finite difference equations were derived and pro-
grammed properly for the computer, some individual
runs, for one value of a and two of the largest y values,
required 2000 s or 34 CRU for the step change in inlet
temperature. By way of contrast, the computer pro-
gram which evaluates the improved quasi-steady
response functions (34), (35) and (38) required only a
total time of 10s or 1 CRU to complete all of the
calculations.

Sinusoidal inlet temperature variation

For this inlet temperature some representative
results for the wall temperature, surface heat flux, and
bulk mean temperature are given in Figs. 5 and 6. The
one value of b*y'?3 for which finite difference results
are presented here was chosen to provide the most

thermal capacity of the fluid, is developed for transient,
conjugated forced convection problems. Using this
approach, two analytical solutions are found, for a
linear velocity profile, to transient conjugated prob-
lems in the thermal entrance region of a duct and the
predicted wall temperature, surface heat flux, and local
bulk mean temperature of the fluid are compared to
finite difference solutions and to standard quasi-steady
solutions to the same problems. Agreement of the
proposed improved quasi-steady approach with the
finite difference solution is highly satisfactory for a
reasonably wide range of the parameter, a, which is the
ratio of the thermal capacity of the fluid to that of the
solid wall, while the standard quasi-steady approach
leads to substantial error.

It is also seen that the method developed herein,
which is an exact solution for transient slug flows and
in the limit of the steady-state is also an exact solution
for non-slug flows, is easier to deal with and more
economical to use than is a finite difference solution to
the problem. Often a needed kernel, which is related to

T T T T T T T T T

T
a-=

0.50

T T T

b x'/?= 092832

Finite Difference Results
e ab=1.0

Improved Quasi-Steady

Standard Quasi-Steady

08

.0

wt/2m

Fic. 5. Wall temperature and heat flux responses for an inlet temperature varying sinusoidally with time.
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FiG. 6. Fluid bulk mean temperature response, in the periodic state, for an inlet temperature varying
sinusoidally with time.

the steady-state flux for flow over the same surface
when isothermal, is already available from solution or
experiment.
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APPENDIX A
Inversion of equation (31)

Lt (Leeu),
sy A

Viewing the bracketed term in {A.1) as being a function of
'3, we attempt to make use of the following result from [14],

Needed is (A.1)

L™ g[w(9)] = J ‘ r(u, x)f (u) du, (A.2)
0

Sy
where
Fwy=L"" g[w] and rlu,y) =L~ ' e"",

W sy

Identifying wis) as 53 in (A.1) gives
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1 V3
= ——p_ PoTW _ I
glw]l = 3¢ dorw, (A.3) where F(y) = L), ¢ = g Kx,«s(

Using the translation theorem and a transform table [14] on  where K is a modified Bessel function of the second kind.
(A.3) yields With this, one has

(u—doty’ w2 2 w3
f(u) =0 for u < ¢,7, and — for u> ¢t (A4d) r(u, x) = 3nx—3/2K1r3<§ \/3X>.

Rearranging, using a substitution property and tables of Using (A.5) and (A.4) in (A.2) yields the inverse ne:
inverses in [14] gives, (A.1) as the second term in equation (32).

L7l e

Sy

F<27X>
3
SU3 _ p =1 = 3ts2T _ u
us'? — Ls«, e u =27 S ,

UNE APPROCHE QUASI-PERMANENTE AMELIOREE DES PROBLEMES VARIABLES DE
CONVECTION FORCEE AVEC COUPLAGE

Résumé—On présente une méthode, dite approche quasi-permanente améliorée, qui tient compte a la fois de
I'effet de I'histoire thermique et du stockage de I’énergie thermique d'un fluide en écoulement pour des
problémes de convection avec couplage, et qui s'applique avec deux des hypothéses, ordinairement implicite,
dans I'approche usuelle, simple, quasi-permanente, des problémes de ce genre. Le développement de la
méthode est facilit¢ par une transformation de variable qui conduit a une solution exacte pour les
écoulements-pistons et qui est généralisée (et approximativement valable) pour les écoulements a profil
varié.

On présente deux solutions analytiques obtenues par cette methode et on les compare aux solutions par
différences finies. Des comparaisons additionnelles sont faites avec les résultats classiques quasi-permanents.

EINE ERWEITERTE METHODE ZUR QUASI-STATIONAREN BEHANDLUNG VON
INSTATIONAREN KONJUGIERTEN PROBLEMEN DER ERZWUNGENEN KONVEKTION

Zusammenfassung—Es wird eine Methode der erweiterten quasi-stationdren Behandlung besechrieben, die
bei instationidren konjugierten Problemen der erzwungenen konvektion sowohl den Einflul der thermischen
Vorgeschichte wie auch die thermische Energiespeicherfahigkeit eines stromenden Fluids niherungsweise
beriicksichtigt und damit auf zwei der Annahmen verzichtet, die gewohnlich bei der iiblichen einfachen
quasi-stationidren Behandlung solcher Probleme gemacht werden. Zur Erweiterung der Methode wird eine
Variablentransformation vorgeschlagen, die zu einer exakten Losung fiir Pfropfenstromungen fiihrt. Diese
wird dann verallgemeinert und damit auch niherungsweise fiir Nicht-Pfropfenstromungen giiltig. Zwei
analytische Losungen, bei denen die vorgeschlagene Methode benutzt wurde, werden angegeben und mit
numerischen Losungen verglichen, die als Vergleichsgrundlage erstellt wurden. Zusitzliche Vergleiche
wurden mit Ergebnissen der iiblichen einfachen quasi-stationdren Methode durchgefiihrt.

YCOBEPIIEHCTBOBAHHBIN KBA3UCTALIMUOHAPHBIN METO[ AHAJIU3A
HECTALIUOHAPHBIX COTIPSIXEHHbIX 3AJAY BLIHYXXJIEHHOW KOHBEKIIUU

Annotamns — IIpeiokeH ycOBEpIICHCTBOBAHHBIH KBA3HCTALMOHAPHBIH METOA, YUHTBIBAIOLIMHA Kak
BJIHSIHHE NPEAUCTOPHHM NMOTOKA XKHAKOCTH, TaK H €ro TEMJOBOH SHEPTUM B HECTALMOHAPHBIX COMpH-
KEHHBIX 3aJa¥aX BBIHYX/JCHHOH KOHBEKLHMH, YTO NO3BOJISET HE NMPHOEraTh K HCHOJb3OBAHHIO JBYX
JIOTIYILIEHHH, XapakTEePHBIX IS OOGBIMHOrO NMPOCTOTO KBa3HCTALIHOHADHOFO METOJAa pELUEHHS TaKHX
3a/la4. YCOBEpLIEHCTBOBAHHBI METO/ OCHOBAH Ha NpeoOpa30oBaHUM NEPEMEHHON M MO3BOJISET MOJY-
YHTh TOYHOE PEILCHHE IS CTEPXHEBBIX PEXHMOB TEYCHHSA, KOTOPOE MOXHO 00OOLIMTE ¢ JOCTATOMHON
CTCNCHBIO TOYHOCTH M HA JIPYTHE PEXHMbBI TEHEHHS.

IMpennoxeHHBIM METOLOM MOTY4EHO BA AHATTHTHYECKHX PELLIEHAS H JaHO CPaBHEHHE CO CNEUHAIBLHO
BBINOJTHEHHBIMHA PEIICHHAMH METOJOM KOHEYHBIX pasHocTed. KpoMe Toro, mpoBeneHoO conocTaBjieHHe

€ OOBLIMHBIMH CTAHAAPTHBLIMH KBa3HCTAUMOHAPHBIMY PE3YJIbTATaAMH.
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